873 research outputs found

    Characterization of the Potential Effects of EMC Filters for Power Converters on Narrowband Power Line Communications

    Get PDF
    Electromagnetic Compatibility (EMC) filters are one of the main solutions for dealing with the disturbances generated by power inverters. However, they show series/parallel resonances that introduce variations in the impedance seen from the grid. Consequently, in some cases, these filters have low impedances at resonance frequencies, which can affect Narrowband Power Line Communications (NB-PLC) due to notching effects. For that reason, the potential effects of four EMC filters on NB-PLC have been studied. Laboratory trials in a controlled environment have been carried out, in which the attenuation and the Signal-to-Noise Ratio (SNR) thresholds that define the communication’s quality have been studied. The results presented in this paper show that, although the variations of the channel frequency response are not selective enough to degrade the communication thresholds, the attenuation measured when the filter is connected near the receiver might be sufficiently high to be critical for the communications in some situations. Therefore, EMC filters might have a negative impact on NB-PLC that had not been previously considered.This research was funded by the BASQUE GOVERNMENT, grant number IT1234-19 and SPANISH GOVERNMENT, grant number RTI2018-099162-B-I00 (MCIU/AEI/FEDER-UE)

    Upgrading the Power Grid Functionalities with Broadband Power Line Communications: Basis, Applications, Current Trends and Challenges

    Get PDF
    This article reviews the basis and the main aspects of the recent evolution of Broadband Power Line Communications (BB-PLC or, more commonly, BPL) technologies. The article starts describing the organizations and alliances involved in the development and evolution of BPL systems, as well as the standardization institutions working on PLC technologies. Then, a short description of the technical foundation of the recent proposed technologies and a comparison of the main specifications are presented; the regulatory activities related to the limits of emissions and immunity are also addressed. Finally, some representative applications of BPL and some selected use cases enabled by these technologies are summarized, together with the main challenges to be faced.This work was financially supported in part by the Basque Government under the grants IT1426-22, PRE_2021_1_0006, and PRE_2021_1_0051, and by the Spanish Government under the grants PID2021-124706OB-I00 and RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”)

    Ultrasound-based structural health monitoring methodology employing active and passive techniques

    Get PDF
    Currently, structures are examined during manufacturing by means of Non Destructive Tests (NDT), but there is an increasing interest in monitoring its integrity over its whole life cycle by using Structural Health Monitoring (SHM) strategies. The monitoring of aircraft structures is particularly important as they suffer high strain under extreme atmospheric conditions. There is an extensive literature on SHM for aviation available but there are few references on comprehensive methodologies. This article introduces a methodology, a device and the tests used in its validation. The electronic prototype for structural health monitoring applies ultrasound techniques by means of piezoelectric transducers. It is lightweight, has USB 2.0 connectivity and includes data pre-processing algorithms to improve its performance. It can run in pitch-catch and pulse-echo modes employing passive and active techniques. Passive techniques are used to detect impacts or fiber breakage in composite materials. Tests based on active techniques can bring to light several types of damages such as those caused abruptly or those produced progressively by corrosion, delamination or fatigue

    Impact of the 2021 La Palma volcanic eruption on air quality: Insights from a multidisciplinary approach

    Get PDF
    The La Palma 2021 volcanic eruption was the first subaerial eruption in a 50-year period in the Canary Islands (Spain), emitting ~1.8 Tg of sulphur dioxide (SO2) into the troposphere over nearly 3 months (19 September-13 December 2021), exceeding the total anthropogenic SO2 emitted from the 27 European Union countries in 2019. We conducted a comprehensive evaluation of the impact of the 2021 volcanic eruption on air quality (SO2, PM10 and PM2.5 concentrations) utilising a multidisciplinary approach, combining ground and satellite-based measurements with height-resolved aerosol and meteorological information. High concentrations of SO2, PM10 and PM2.5 were observed in La Palma (hourly mean SO2 up to ~2600 μg m−3 and also sporadically at ~140 km distance on the island of Tenerife (> 7700 μg m−3) in the free troposphere. PM10 and PM2.5 daily mean concentrations in La Palma peaked at ~380 and 60 μg m−3. Volcanic aerosols and desert dust both impacted the lower troposphere in a similar height range (~ 0–6 km) during the eruption, providing a unique opportunity to study the combined effect of both natural phenomena. The impact of the 2021 volcanic eruption on SO2 and PM concentrations was strongly influenced by the magnitude of the volcanic emissions, the injection height, the vertical stratification of the atmosphere and its seasonal dynamics. Mean daily SO2 concentrations increased during the eruption, from 38 μg m−3 (Phase I) to 92 μg m−3 (Phase II), showing an opposite temporal trend to mean daily SO2 emissions, which decreased from 34 kt (Phase I) to 7 kt (Phase II). The results of this study are relevant for emergency preparedness in all international areas at risk of volcanic eruptions; a multidisciplinary approach is key to understand the processes by which volcanic eruptions affect air quality and to mitigate and minimise impacts on the population.The authors also acknowledge the support from ACTRIS and ACTRIS-Spain, the Spanish Ministry of Science and Innovation and the support from the European Union H2020 program through the following projects (PID2019-104205GB-C21/AEI/10.13039/501100011033, EQC2018-004686-P, PID2019-103886RB-I00/AEI/10.13039/501100011033 and PID2020-521-118793GA-I00) and programs (GA No. 654109, 778349, 871115, 101008004 and 101086690). Research activities of the CSIC staff during the eruption were funded by CSIC through the CSIC-PIE project with ID numbers PIE20223PAL009 and PIE20223PAL013 (Real Decreto 1078/2021, de 7 de diciembre). Part of this study was performed within the framework of the project AERO-EXTREME (PID2021-125669NB-I00) funded by the Spanish State Research Agency (AEI) and ERDF funds

    Ears of the Armadillo: Global Health Research and Neglected Diseases in Texas

    Get PDF
    Neglected tropical diseases (NTDs) have\ud been recently identified as significant public\ud health problems in Texas and elsewhere in\ud the American South. A one-day forum on the\ud landscape of research and development and\ud the hidden burden of NTDs in Texas\ud explored the next steps to coordinate advocacy,\ud public health, and research into a\ud cogent health policy framework for the\ud American NTDs. It also highlighted how\ud U.S.-funded global health research can serve\ud to combat these health disparities in the\ud United States, in addition to benefiting\ud communities abroad

    Breakthrough invasive fungal infection among patients with haematologic malignancies: A national, prospective, and multicentre study

    Get PDF
    Objectives: We describe the current epidemiology, causes, and outcomes of breakthrough invasive fungal infections (BtIFI) in patients with haematologic malignancies.Methods: BtIFI in patients with & GE; 7 days of prior antifungals were prospectively diagnosed (36 months across 13 Spanish hospitals) according to revised EORTC/MSG definitions.Results: 121 episodes of BtIFI were documented, of which 41 (33.9%) were proven; 53 (43.8%), probable; and 27 (22.3%), possible. The most frequent prior antifungals included posaconazole (32.2%), echinocandins (28.9%) and fluconazole (24.8%)-mainly for primary prophylaxis (81%). The most common haematologic malignancy was acute leukaemia (64.5%), and 59 (48.8%) patients had undergone a hematopoietic stem-cell transplantation. Invasive aspergillosis, principally caused by non-fumigatus Aspergillus, was the most fre-quent BtIFI with 55 (45.5%) episodes recorded, followed by candidemia (23, 19%), mucormycosis (7, 5.8%), other moulds (6, 5%) and other yeasts (5, 4.1%). Azole resistance/non-susceptibility was commonly found. Prior antifungal therapy widely determined BtIFI epidemiology. The most common cause of BtIFI in proven and probable cases was the lack of activity of the prior antifungal (63, 67.0%). At diagnosis, antifungal therapy was mostly changed (90.9%), mainly to liposomal amphotericin-B (48.8%). Overall, 10 0-day mor-tality was 47.1%; BtIFI was either the cause or an essential contributing factor to death in 61.4% of cases.Conclusions: BtIFI are mainly caused by non-fumigatus Aspergillus, non-albicans Candida, Mucorales and other rare species of mould and yeast. Prior antifungals determine the epidemiology of BtIFI. The exceed-ingly high mortality due to BtIFI warrants an aggressive diagnostic approach and early initiation of broad-spectrum antifungals different than those previously used.& COPY; 2023 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen

    Get PDF
    Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.We thank Ministerio de Ciencia e Innovación, Programa Retos-Colaboración RTC2019- 007125-1 (for J.S. and M.L.M.-C.); Instituto de Salud Carlos III: Proyectos de Investigación en Salud DTS20/00138 (for J.S. and M.L.M.-C.), PI20/00690 (for R.J.) and PT20/000127 (for M.I.L.); CIBERehd: EHD21TRF01/2022 (to M.L.M.-C.); Departamento de Industria del Gobierno Vasco (for M.L.M.-C.); Ministerio de Ciencia, Innovación y Universidades MICINN: PID2020-117116RB-I00 and RTI2018- 096759-1-100 integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación, cofinanciado con Fondos FEDER (for M.L.M.-C. and T.C.D., respectively); BIOEF (Basque Foundation for Innovation and Health Research); Asociación Española contra el Cáncer (AECC) (to M.L.M.-C., T.C.D.); AECC: GCTRA18006CARR (to A.C.); Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (for M.L.M.); La Caixa Foundation Program (for M.L.M.); BFU2015-70067-REDC, BFU2016-77408-R and BES-2017-080435 (MINECO/FEDER, UE); Ministerio de Ciencia, Innovación y universidades PID2019-108787RB-100 (to A.C.), PID2019- 109055RB-I00 (L.A.M.-C.), PID2020-117941RB-100 (to F.J.C.); Spanish Ministry of Economy and Competitiveness Grants BFU2013-47531-R and BFU2016-77408-R (L.A.M.-C.) and the FIGHT-CNNM2 project from the EJP RD Joint Transnational Call (JTC2019) (Ref. AC19/00073) (for L.A.M.-C.); Comunidad de Madrid: EXOHEP-CM S2017/BMD-3727 and NanoLiver-CM Y2018/NMT-4949 co-funded by European Structural and Investment Fund and COST Action CA17112 (to F.J.C.); Vencer el Cáncer Foundation (to A.C.); European Research Council: Consolidator Grant 819242 (to A.C.); CIBERONC and CIBERehd were funded by the Instituto de Salud Carlos III and Cofunded by FEDER funds. Partial funding for open access charge: Universidad de Málag

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version
    corecore